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Beyond Classification and Regression

1 Applications such as image synthesis, image-to-image transformations
model high-dim signals

2 These applications require to learn the meaningful degrees of freedom
that constitute the signal

3 These degrees of freedom are of lesser dimensions than the signal
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Example: Synthesizing Human faces

1 For generating new faces, it makes sense to capture a small number
of degrees of freedom such as

skull size and shape
color of skin and eyes
features of nose and lips, etc.

2 Even a comprehensive list of such things will be less than the number
of pixels in the image (i.e. resolution)

3 If we can model these relatively small number of dimensions, we can
synthesize a face with thousands of dimensions
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Autoencoder
1 Neural network that maps a space to itself

2 Trained to copy its input to itself (close to, but not an identity
function)

3 Network consists of two parts: encoder (f) and decoder (g)

4
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Autoencoder

1 Original (input) space is of higher dimensions but the data lies in a
manifold of smaller dimension

2 Dimension of the latent space is a hyper-parameter chosen from prior
knowledge, or through heuristics
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Autoencoder

1 Original (input) space is of higher dimensions but the data lies in a
manifold of smaller dimension

2 Dimension of the latent space is a hyper-parameter chosen from prior
knowledge, or through heuristics

Figure credits: Francois Flueret
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Autoencoder

1 Let p be the data distribution in the input space, autoencoder is
characterized with the following loss

Ex∼p ∥x − g ◦ f(x)∥2 ≈ 0

2 Training the autoencoder consists of finding the parameters for the
encoder (f(·; wf )) and decoder (g(·; wg) optimizing the following
empirical loss

ŵf , ŵg = argmin
wf ,wg

1
N

∑
n

∥xn − g(f(xn; wf ); wg)∥2
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Autoencoder

1 A simple example: f and g are linear functions → optimal solution is
PCA

2 Better results can be made possible with sophisticated
transformations such as deep neural networks → Deep Autoencoders
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Deep Autoencoders
AutoEncoder (

(encoder): Sequential (

(0): Conv2d(1, 32, kernel_size=(5, 5), stride=(1, 1)) (1): ReLU (inplace)

(2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1)) (3): ReLU (inplace)

(4): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2)) (5): ReLU (inplace)

(6): Conv2d(32, 32, kernel_size=(3, 3), stride=(2, 2)) (7): ReLU (inplace)

(8): Conv2d(32, 8, kernel_size=(4, 4), stride=(1, 1)) )

(decoder): Sequential (

(0): ConvTranspose2d(8, 32, kernel_size=(4, 4), stride=(1, 1)) (1): ReLU

(inplace)

(2): ConvTranspose2d(32, 32, kernel_size=(3, 3), stride=(2, 2)) (3): ReLU

(inplace)

(4): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2)) (5): ReLU

(inplace)

(6): ConvTranspose2d(32, 32, kernel_size=(5, 5), stride=(1, 1)) (7): ReLU

(inplace)

(8): ConvTranspose2d(32, 1, kernel_size=(5, 5), stride=(1, 1)) ) )
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Deep Autoencoders

Top row: original data samples
Bottom row: corresponding reconstructed samples (with linear layer of
dimension 32)

Figure credits:blog.keras.io
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Latent Representations

1 Consider two samples in the latent space and reconstruct the samples
along the line joining these

2 g(αx + (1 − α)x′)

Figure credits: Francois Fleuret
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Latent Representations
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Generative Modeling by Autoencoder

1 Introduce a density model over the latent space

2 Sample there and reconstruct using the decoder g

3 For instance, use a Gaussian density for modeling the latent space
from the training data (estimate mean and a diagonal covariance
matrix)
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Generative Modeling by Autoencoder

Figure credits: Francois Fleuret
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Generative Modeling by Autoencoder

1 Reconstructions are not convincing

2 Because the density model is too simple
3 Good model still needs to capture the empirical distribution on the

data although in a lower dimensional space
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Besides dimensionality reduction

1 Autoencoders can capture the dependencies across signal components

2 This can help to restore the missing components from an input
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Besides dimensionality reduction

1 In this scenario, we may ignore the encoder/decoder architecture

2 Goal in this case is not to learn a ϕ such that ϕ(X) ≈ X

3 It is to learn a ϕ such that ϕ(X̃) ≈ X, where X̃ is a perturbed
version of X

4 This is referred to as a Denoising Autoencoder
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Denoising Autoencoder

1 This can be illustrated with an additive Gaussian noise in case of a
2D signal and MSE

ŵ = argmin
w

1
N

N∑
n=1

∥xn − ϕ(xn + ϵn; w)∥2 ,

where xn are data samples and ϵn are Gaussian random noise
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Denoising Autoencoder

Figure credits: Ali Abdelal, https://stackabuse.com/
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Weakness

1 Posterior fxn|xn+ϵ may be multi-model

2 L2 loss (used for training) assumes the underlying target distribution
is Gaussian (thus unimodal)

3 L2 loss encourages the network to minimize loss across all modes

Figure credits:Patrick Langechuan Liu
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Weakness

1 Posterior fxn|xn+ϵ may be multi-model
2 L2 loss (used for training) assumes the underlying target distribution

is Gaussian (thus unimodal)
3 L2 loss encourages the network to minimize loss across all modes
4 In image reconstruction applications, this leads to blurry results
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