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Beyond Classification and Regression ‘CN

@ Applications such as image synthesis, image-to-image transformations
model high-dim signals
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@ Applications such as image synthesis, image-to-image transformations

model high-dim signals
@ These applications require to learn the meaningful degrees of freedom

that constitute the signal
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@ Applications such as image synthesis, image-to-image transformations

model high-dim signals
@ These applications require to learn the meaningful degrees of freedom

that constitute the signal
@ These degrees of freedom are of lesser dimensions than the signal
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Example: Synthesizing Human faces

@ For generating new faces, it makes sense to capture a small number
of degrees of freedom such as
o skull size and shape
o color of skin and eyes
o features of nose and lips, etc.
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Example: Synthesizing Human faces

@ For generating new faces, it makes sense to capture a small number
of degrees of freedom such as
o skull size and shape

o color of skin and eyes

o features of nose and lips, etc.
@ Even a comprehensive list of such things will be less than the number

of pixels in the image (i.e. resolution)
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Example: Synthesizing Human faces

@ For generating new faces, it makes sense to capture a small number
of degrees of freedom such as

o skull size and shape
o color of skin and eyes
o features of nose and lips, etc.

@ Even a comprehensive list of such things will be less than the number
of pixels in the image (i.e. resolution)

@ If we can model these relatively small number of dimensions, we can
synthesize a face with thousands of dimensions
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Autoencoder

@ Neural network that maps a space to itself
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Autoencoder
@ Neural network that maps a space to itself
@ Trained to copy its input to itself (close to, but not an identity

function)

Dr. Konda Reddy Mopuri dl4cv-17a/Autoencoders

6\&"“7’“ g,

ol
o 7,

%,
2
€ of Tech

kg
%

ati - 2

[)
2

-3



Autoencoder

@ Neural network that maps a space to itself

@ Trained to copy its input to itself (close to, but not an identity
function)

@ Network consists of two parts: encoder (f) and decoder (g)
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Autoencoder
@ Neural network that maps a space to itself

@ Trained to copy its input to itself (close to, but not an identity

function)
@ Network consists of two parts: encoder (f) and decoder (g)

Encoded
Feature (h)

Reconstructed
Input (g(f(a0)

Input (x)
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Autoencoder

@ Original (input) space is of higher dimensions but the data lies in a
manifold of smaller dimension
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Autoencoder

@ Original (input) space is of higher dimensions but the data lies in a
manifold of smaller dimension

@ Dimension of the latent space is a hyper-parameter chosen from prior
knowledge, or through heuristics
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@ Original (input) space is of higher dimensions but the data lies in a
manifold of smaller dimension

@ Dimension of the latent space is a hyper-parameter chosen from prior
knowledge, or through heuristics

— Latent space F

Original space &

Figure credits: Francois Flueret
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Autoencoder

@ Let p be the data distribution in the input space, autoencoder is
characterized with the following loss

Eonpllz — g0 f(2)|* =0
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Autoencoder

@ Let p be the data distribution in the input space, autoencoder is
characterized with the following loss

~0

2
Eonpllz —go f(2)]]

@ Training the autoencoder consists of finding the parameters for the
encoder (f(-;wy)) and decoder (g(-;wy) optimizing the following

empirical loss

. 1
Wy, 1y = axgmin S [ = g(f (i wp)swy)

'LUf,'LUg n
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Autoencoder
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@ A simple example: f and g are linear functions — optimal solution is
PCA
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@ A simple example: f and g are linear functions — optimal solution is

PCA
@ Better results can be made possible with sophisticated
transformations such as deep neural networks — Deep Autoencoders
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Deep Autoencoders

AutoEncoder (

(encoder): Sequential (

(0):
(2):
(4):
(6):
(8):

§
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Conv2d(1, 32, kernel_size=(5, 5), stride=(1, 1)) (1): ReLU (inplace)

Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1)) (3): ReLU (inplace)
Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2)) (5): ReLU (inplace)
Conv2d(32, 32, kernel_size=(3, 3), stride=(2, 2)) (7): ReLU (inplace)

Conv2d (32, 8, kernel_size=(4, 4), stride=(1, 1)) )

(decoder): Sequential (

(0): ConvTranspose2d(8, 32, kernel_size=(4, 4), stride=(1, 1)) (1):
(inplace)

(2): ConvTranspose2d(32, 32, kernel_size=(3, 3), stride=(2, 2)) (3):
(inplace)

(4): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2)) (5):
(inplace)

(6): ConvTranspose2d(32, 32, kernel_size=(5, 5), stride=(1, 1)) (7):
(inplace)

(8): ConvTranspose2d(32, 1, kernel_size=(5, 5), stride=(1, 1)) ) )
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Deep Autoencoders
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Top row: original data samples

Bottom row: corresponding reconstructed samples (with linear layer of
dimension 32)

Figure credits:blog.keras.io
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Latent Representations
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@ Consider two samples in the latent space and reconstruct the samples

along the line joining these

Latent space

Original space &

Figure credits: Francois Fleuret
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Latent Representations
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@ Consider two samples in the latent space and reconstruct the samples

along the line joining these
@ glax+ (1 —a)2)

Latent space %

Original space &

Figure credits: Francois Fleuret
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Latent Representations
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Generative Modeling by Autoencoder

@ Introduce a density model over the latent space
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Generative Modeling by Autoencoder

@ Introduce a density model over the latent space
@ Sample there and reconstruct using the decoder ¢
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Generative Modeling by Autoencoder

@ Introduce a density model over the latent space
@ Sample there and reconstruct using the decoder ¢

@ For instance, use a Gaussian density for modeling the latent space
from the training data (estimate mean and a diagonal covariance

matrix)
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Generative Modeling by Autoencoder ‘%

Autoencoder sampling (d = 8)

Figure credits: Francois Fleuret
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Generative Modeling by Autoencoder

@ Reconstructions are not convincing
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Generative Modeling by Autoencoder

@ Reconstructions are not convincing

@ Because the density model is too simple
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Generative Modeling by Autoencoder

@ Reconstructions are not convincing
@ Because the density model is too simple

@ Good model still needs to capture the empirical distribution on the
data although in a lower dimensional space
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Besides dimensionality reduction

@ Autoencoders can capture the dependencies across signal components
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Besides dimensionality reduction

@ Autoencoders can capture the dependencies across signal components

@ This can help to restore the missing components from an input
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Besides dimensionality reduction

@ In this scenario, we may ignore the encoder/decoder architecture
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Besides dimensionality reduction

@ In this scenario, we may ignore the encoder/decoder architecture
~ X

@ Goal in this case is not to learn a ¢ such that ¢(X)
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Besides dimensionality reduction C}

@ In this scenario, we may ignore the encoder/decoder architecture

@ Goal in this case is not to learn a ¢ such that ¢(X) ~ X

@ It is to learn a ¢ such that ¢(X) ~ X, where X is a perturbed
version of X
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Besides dimensionality reduction N

@ In this scenario, we may ignore the encoder/decoder architecture
@ Goal in this case is not to learn a ¢ such that ¢(X) ~ X

@ It is to learn a ¢ such that qﬁ(X’) ~ X, where X is a perturbed
version of X

@ This is referred to as a Denoising Autoencoder
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Denoising Autoencoder

@ This can be illustrated with an additive Gaussian noise in case of a

2D signal and MSE
N

A . 1
W = argmin N Z |xrn — d(xn + €n; w)HQ )
w

n=1

where x,, are data samples and ¢, are Gaussian random noise
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Denoising Autoencoder
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Figure credits: Ali Abdelal, https://stackabuse.com/
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Weakness
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@ Posterior f;, |z,+c Mmay be multi-model

—— Data
—— L2loss

Figure credits:Patrick Langechuan Liu
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Weakness

K

@ Posterior f;, |z,+c Mmay be multi-model
@ L2 loss (used for training) assumes the underlying target distribution

is Gaussian (thus unimodal)

—— Data
—— L2loss

Figure credits:Patrick Langechuan Liu
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Weakness H

@ Posterior f;, |z,+c Mmay be multi-model

@ L2 loss (used for training) assumes the underlying target distribution
is Gaussian (thus unimodal)

@ L2 loss encourages the network to minimize loss across all modes

—— Data
—— L2loss

Figure credits:Patrick Langechuan Liu
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@ Posterior f;, |z,+c Mmay be multi-model

@ L2 loss (used for training) assumes the underlying target distribution
is Gaussian (thus unimodal)

@ L2 loss encourages the network to minimize loss across all modes

@ In image reconstruction applications, this leads to blurry results

Dr. Konda Reddy Mopuri dl4cv-17a/Autoencoders 21



